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Conditional Stochastic Dominance Tests in Dynamic Settings∗

By Jesus Gonzalo1 and Jose Olmo

This paper proposes nonparametric consistent tests of conditional stochastic dominance of arbitrary order

in a dynamic setting. The novelty of these tests lies in the nonparametric manner of incorporating the

information set. The test allows for general forms of unknown serial and mutual dependence between random

variables, and has an asymptotic distribution that can be easily approximated by simulation. This method

has good finite-sample performance. These tests are applied to determine investment efficiency between US

industry portfolios conditional on the dynamics of the market portfolio. The empirical analysis suggests that

Telecommunications dominates the other sectoral portfolios under risk aversion.

JEL classification: C1, C2, G1.

Keywords: Hypothesis testing, kernel estimation, lower partial moments, nonparametric regression, p-value

transformation, stochastic dominance

1 Introduction

During the last thirty years, the interest in comparisons of random variables has shifted from hypothesis tests

for the first and second statistical moments to more complex tests that consider the entire distribution of the

data. The reason for this is twofold. First, the common belief is that the underlying generating processes

are nonlinear and cannot be described by simple models of mean and variance. Second, the development of

sophisticated mathematical and statistical techniques is based on empirical processes that allow for a com-

parison between distribution functions and higher statistical moments. The interest in testing for stochastic

dominance between random variables has arisen in different theoretical and applied fields within statistics,

economics and recently, finance. The comparison of wealth distributions between economies has been widely

investigated in the literature (see McFadden (1989), Larsen and Resnick (1993), Kaur, Prakasa Rao and Singh
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(1994), Anderson (1996), Davidson and Duclos (2000) and Barrett and Donald (2003), amongst others). The

close relationship between the concept of stochastic dominance and expected utility maximization for rational

investors has also produced a fertile area of research in finance (see Stone (1973), Porter (1974) or Fishburn

(1977)). These authors discuss the link between stochastic dominance and portfolio efficiency. More recently,

Shalit and Yitzhaki (1994) and Linton, Maasoumi and Whang (2005, LMW hereafter) extend this relationship

to conditional portfolio efficiency and conditional stochastic dominance.

The concept of conditional stochastic dominance has been subject to different interpretations. Thus,

Shalit and Yitzhaki (1994) define marginal conditional stochastic dominance as the probabilistic conditions

under which all risk-averse individuals, conditional on a portfolio of assets, prefer to increase the share of

a risky asset to that of another asset in the same portfolio. These authors study the implications of this

definition in the efficiency of the market portfolio. LMW, however, econometrically analyze the implications

of extending stochastic dominance and portfolio efficiency to a conditional, potentially dynamic, setting. These

authors allow for serial and cross dependence between investment portfolios and develop hypothesis tests for

conditional stochastic dominance with the aim of uncovering stochastically maximal investment strategies

conditional on other explanatory factors. Related tests for stochastic dominance and portfolio efficiency are

found in Post (2003), Kopa and Post (2009) and Scaillet and Topaloglou (2010), among others.

The statistical methods necessary to test for stochastic dominance of an arbitrary order are based on em-

pirical processes and complex asymptotic theory. A seminal contribution is that of Barrett and Donald (2003)

who develops tests for stochastic dominance between independent random variables in an independent and

identically distributed (iid) framework. The asymptotic distribution of their family of test statistics follows a

Gaussian process with a covariance function that depends on functions of the cumulative marginal distribu-

tions of the random variables, and hence cannot be tabulated. These authors propose a bootstrap procedure

and a simulation method based on Hansen’s (1996) p-value transformation to approximate the asymptotic

distribution of the test. Their method also allows for different sample sizes for each random variable. The

limitations of this method for the analysis of time series, which are used in most financial applications, are ob-

vious and lead LMW to extend the method to propose consistent tests of stochastic dominance under general

sampling schemes that include serial and mutual dependence between random variables. These authors work

in a parametric framework in which the response variable is a function of sets of explanatory variables that can

contain lags of the endogenous variable. Their method also permits working with the residuals of parametric

models, and, therefore, developing tests of conditional stochastic dominance. Unfortunately, the estimation

of model parameters invalidates the asymptotic theory developed in Barrett and Donald (2003) due to an

2



extra term produced by estimation uncertainty that remains in the asymptotic distribution of the test. LMW

solve this problem by implementing subsampling methods to approximate this distribution. This resampling

method produces consistent estimates of the critical values of the test not only under the least favorable case

given by the equality of functions but also on the boundary of the null hypothesis. The formulation of these

authors is very flexible and allows for general conditioning schemes. The parametric nature of the method,

potentially affected by model misspecification, and the choice of block size in the subsampling approximation

of the critical values of the test are subject to criticism and discussion.

More recently, Linton, Song and Whang (2010) propose bootstrap tests that refine the method in LMW by

achieving asymptotic sizes less than or equal to the nominal level uniformly over the probabilities in the null

hypothesis. These tests lead to an improvement in the power over LMW but face the same potential problems

discussed above. Delgado and Escanciano (2013) also propose bootstrap-based stochastic dominance tests

with asymptotic sizes equal to the nominal level uniformly over the boundary points of the null hypothesis. In

contrast to Linton, Song and Whang (2010), these authors focus on testing first-order stochastic dominance

between nonparametric conditional distributions of iid random variables. Although this test can be easily

extended to higher orders of stochastic dominance, the extension of the test to a dynamic time series framework

appears more cumbersome.

The main contribution of this paper is to develop hypothesis tests of stochastic dominance of arbitrary

orders under general conditioning schemes that, unlike LMW, do not require parametric specifications of

the conditional dynamics. By a transformation of the different statistical moments of the random variables

in terms of lower partial moments and the use of nonparametric kernel methods for stationary β−mixing

processes, we can characterize the null hypothesis of stochastic dominance of an arbitrary order as a nonpara-

metric regression between the difference of weighted functions of the random variables under comparison and

the information set, approximated by a finite vector of regressors. This methodology is very flexible; estima-

tors of the different quantities are obtained from standard nonparametric kernel regression methods, and the

asymptotic theory follows from combining well-known results in nonparametric econometrics for conditional

density estimation and regression. Our tests allow for general forms of serial and mutual dependence between

the variables to be compared as well as those contained in the information set. The asymptotic distribution of

the tests depends on nuisance parameters and hence, it cannot be tabulated; to overcome this issue we propose

simulation methods that approximate the p-values of the tests. In particular, we discuss a multiplier method

similar in spirit to the simulation method proposed in Hansen (1996) and more recently in Chernozhukov,

Lee and Rosen (2012). The method is shown to work well for small sample sizes and for arbitrary orders of
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stochastic dominance.

This theory is applied to determine the efficiency of ten portfolios representing US industrial sectors:

Nondurables, Durables, Manufactures, Energy, High Technology, Telecommunications, Shops, Health, Utilities

and Others, conditional on the performance of a value-weighted market portfolio, spanning the period 1960-

2009. Our results show that the Telecommunications sector dominates the High-Tech and Shop sectors for

the second and third orders of stochastic dominance. Furthermore, at the 20% significance level, this portfolio

also dominates for second and third orders of stochastic dominance the other sectoral portfolios.

The paper is structured as follows. Section 2 introduces the definition of stochastic dominance under

general conditioning schemes and proposes hypothesis tests for stochastic dominance of arbitrary orders.

Section 3 derives the asymptotic theory for these tests and discusses a simulation method to consistently

approximate the asymptotic p-value of the test. In Section 4 we perform a Monte Carlo simulation experiment

to study the finite sample performance of the proposed tests. Section 5 applies this testing method to assess

stochastic dominance between US industrial sectors conditional on the dynamics of the market portfolio.

Section 6 concludes; proofs are presented in a mathematical appendix.

2 Conditional Stochastic Dominance in Dynamic Models

This section extends the definition of stochastic dominance to general conditioning schemes and proposes con-

sistent hypothesis tests for this condition based on nonparametric methods. Let (Y A
t , Xt)t∈Z and (Y B

t , Xt)t∈Z

be two different R1+k strictly stationary multivariate time series processes with an information set It =

{(Y A
s−1, Y

B
s−1, Xs), t−m+ 1 ≤ s ≤ t} defined on a compact set Ω′ ⊂ Rq with q = (k + 2)m. Let F (y) be the

marginal cumulative distribution function (cdf) corresponding to Yt, FIt(y) = P{Yt ≤ y|It} the correspond-

ing distribution function conditional on the set It, and f(·) and fIt(·) the respective density functions. The

marginal distribution and density functions of It are F
It(·) and f It(·), respectively. The subindex s in ms and

mss denotes the first and second derivatives of a generic function m(It) with respect to the component s of

the multivariate vector It. The indexes A and B denote the random variables Y A
t and Y B

t that are defined

on a compact set Ω ⊂ R; (Yt, It) ∈ Ω̃ = Ω× Ω′.

The definition of unconditional γ−stochastic dominance of Y B
t by Y A

t for 1 ≤ γ < ∞ is

(1) ΨA
γ (y) ≤ ΨB

γ (y), for all y ∈ Ω ⊂ R,
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with strict inequality for some y (see Levy (2006)); Ψγ(y) =
∫ y
−∞Ψγ−1(τ)dτ with Ψ1(y) = F (y). Using

integration by parts for Ψγ(y), we observe that the above definition can be expressed as

∫ y

−∞
(y − τ)γ−1fA(τ)dτ ≤

∫ y

−∞
(y − τ)γ−1fB(τ)dτ for all y ∈ Ω ⊂ R.

This characterization of stochastic dominance has been thoroughly discussed in early studies on portfolio

efficiency (see Stone (1973), Porter (1974) or Fishburn (1977)). For the study of conditional stochastic

dominance, we modify these definitions to incorporate the conditional distribution FIt(·).

Definition: Y A
t γ-stochastic dominates Y B

t conditional on It for all t ∈ Z, if and only if

(2) ΨA
It,γ(y) ≤ ΨB

It,γ(y) for all y ∈ Ω and t ∈ Z,

where ΨIt,γ(y) =
∫ y
−∞ΨIt,γ−1(τ)dτ and ΨIt,1(y) = FIt(y).

Using integration by parts, ΨIt,γ(y) =
∫ y
−∞(y − τ)γ−1fIt(τ)dτ and condition (2) reads as

(3)

∫ y

−∞
(y − τ)γ−1fA

It (τ)dτ ≤
∫ y

−∞
(y − τ)γ−1fB

It (τ)dτ for all y ∈ Ω and t ∈ Z.

An alternative characterization of stochastic dominance is provided in terms of the class of all von

Neumann-Morgenstern type utility functions; (see Lemma 1 in Fishburn (1977), Shalit and Yitzhaki (p.

671, 1994) for second stochastic dominance, or Definition 2 in LMW). The extension of these results to a

conditional dynamic setting is straightforward and omitted for the sake of brevity. The difference from the

unconditional (static) approach is that by testing dynamically for the stochastic dominance of one investment

strategy over another, we can assess the optimality of the investor’s decision as the information set varies over

time.

Klecan, McFadden and McFadden (1991), Anderson (1996), Davidson and Duclos (2000) and more re-

cently Barrett and Donald (2003), pioneered the development of hypotheses for arbitrary orders of stochastic

dominance in an iid setting. The test is defined as

sup
y∈Ω

(
ΨA

γ (y)−ΨB
γ (y)

)
≤ 0.

The stationary version of this test under the presence of serial dependence in the data is developed in Scaillet

and Topaloglou (2010). LMW, however, focus on dynamic tests of conditional stochastic dominance based on
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the analysis of residuals of time series regression models. The definition of conditional stochastic dominance

in (2) and the characterization in (3) allow us to propose the following composite test for the hypothesis of

conditional stochastic dominance in dynamic settings:

(4) H0,γ : E[dt,γ(y)|It] ≤ 0 for all y ∈ Ω and t ∈ Z,

with dt,γ(y) = (y − Y A
t )γ−11(Y A

t ≤ y)− (y − Y B
t )γ−11(Y B

t ≤ y), vs.

H1,γ : E[dt,γ(y)|It] > 0 for some y ∈ Ω and t ∈ Z.

The stationarity of the multivariate distribution of the random variables (Y A
t , It) and (Y B

t , It) implies that

this condition can be expressed in terms of (Y A
1 , I1) and (Y B

1 , I1) as
2

(5) H0,γ : E[d1,γ(y)|I1 = x] ≤ 0 for all z = (x, y) ∈ Ω̃, vs.

H1,γ : E[d1,γ(y)|I1 = x] > 0 for some z = (x, y) ∈ Ω̃.

The null hypothesis of these tests is composite, meaning that there are infinitely many conditions to be

tested. Therefore, it is not clear in principle how one should derive the sampling distribution under the null

hypothesis. Barrett and Donald (2003) and previous authors focus on the least favorable case under the null

hypothesis. The advantage of this approach resides in its simplicity when deriving the asymptotic theory of

the test. However, the use of the least favorable case as a null hypothesis results in the largest critical values

possible. Romano and Wolf (2011), in a similar setting, also advocate this approach as a conservative but

useful method to obtain critical values under composite null hypotheses. In our framework the least favorable

case is given by H̃0,γ : E[d1,γ(y)|I1 = x] = 0 for all z ∈ Ω̃. The rejection of the null hypothesis H0,γ implies

that Y A
t does not dominate Y B

t stochastically for order γ. The failure to reject this null hypothesis is a

necessary condition for the presence of stochastic dominance of Y A
t over Y B

t . However, this test needs to be

complemented with the reverse test characterized by swapping the roles of the random variables under both

hypotheses (Hr
0,γ : E[−d1,γ(y)|I1 = x] ≤ 0 for all z ∈ Ω̃ and Hr

1,γ : E[−d1,γ(y)|I1 = x] > 0 for some z ∈ Ω̃).

The rejection of Hr
0,γ against Hr

1,γ implies that Y A
t dominates Y B

t stochastically; otherwise the hypothesis of

equality of the quantities ΨA
I1,γ

and ΨB
I1,γ

cannot be rejected. Finally, if the null hypothesis H0,γ is rejected

against H1,γ and Hr
0,γ is rejected against Hr

1,γ , there is statistical evidence to claim that Y A
t and Y B

t are

2See Delgado and Escanciano (2007) for similar uses of this notation.
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stochastically efficient (no dominance in either direction) with order γ.

3 Asymptotic Theory and P-value Approximation

This section introduces a family of test statistics for H0,γ and develops the corresponding asymptotic theory

based on H̃0,γ . The asymptotic distribution of the tests is nonstandard and cannot be tabulated. To solve

this problem, we also develop a simulation method that approximates the asymptotic p-values of the tests.

The methodology is nonparametric and based on kernel estimators of the relevant quantities necessary for our

study.

3.1 Asymptotic Theory

We consider the following nonparametric estimator of ΨIt,γ(y) for It = x, a fixed vector of dimension q:

(6) Ψ̂x,γ(y) =

n−1
n∑

t=1
(y − Yt)

γ−11(Yt ≤ y)Wh

(
It−x
h

)
f̂ I1(x)

,

where f̂ I1(x) = n−1
n∑

t=1
Wh

(
It−x
h

)
is the kernel estimator of the multivariate density function f I1(x); and

Wh

(
It−x
h

)
=

q

Π
s=1

h−1
s w

(
It,s−xs

hs

)
where w(·) is a univariate kernel function. Note that It,s and xs denote the

sth−component of the multivariate random vectors It and x, respectively; hs is the bandwidth parameter

corresponding to the variable It,s.

Let Dn,γ(z) = Ψ̂A
x,γ(y)−Ψ̂B

x,γ(y) be the empirical version of ΨA
x,γ(y)−ΨB

x,γ(y) for the vector z = (x, y) ∈ Ω̃.

This estimator, also expressed as

(7) Dn,γ(z) =

n−1
n∑

t=1
dt,γ(y)Wh

(
It−x
h

)
f̂ I1(x)

,

can be interpreted as the Nadaraya-Watson kernel estimator (see Nadaraya (1965) and Watson (1964)) in the

following dynamic stationary regression:

(8) dt,γ(y) = gγ(It, y) + ut(y),

where gγ(It, y) is an unknown smooth function that depends on the value x that the information set It takes
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at time t. In the standard mean square error sense the function gγ(z) obtained from It = x is interpreted as

the conditional mean of dt,γ(y) given It = x, i.e. gγ(z) = E[dt,γ(y)|It = x] with z = (x, y), and ut(y) is the

error term of the regression that satisfies E[ut(y)|It = x] = 0. We further assume that the error process is

iid for all y ∈ Ω. This representation of the problem in terms of nonparametric mean regression allows us to

write the null hypothesis in (5) as H0,γ : sup
z∈Ω̃

gγ(z) ≤ 0 and the least favorable case H̃0,γ as gγ(z) = 0 for all

z ∈ Ω̃. The asymptotic theory of the test exploits these characterizations of the null hypothesis.

In both theoretical and practical settings, nonparametric kernel estimation has been established as being

relatively insensitive to the choice of the kernel function. The same cannot be said for bandwidth selection.

The interpretation of (7) in terms of a nonparametric regression allows us to use standard least squares cross-

validation methods to determine the optimal vector of bandwidth parameters. The advantage of this method

over other alternatives, such as a rule of thumb or plug-in methods is that cross-validation automatically

discards irrelevant information from the vector It (see Li and Racine (2007, p. 69)). We should acknowledge,

however, that in practice, the use of nonparametric regression techniques can be challenging if the conditioning

sets are defined by a large number of covariates. Unfortunately, there is no easy solution to this problem that

is intrinsic to the nonparametric regression literature. Partial solutions to mitigate the problem involve

imposing some structure on the nonparametric regression, as for example an additive model. It is well

known that for kernel-based methods, two approaches are commonly used for estimating an additive model:

the backfitting method (see Buja, Hastie and Tibshirani (1989) and Hastie and Tibshirani (1989)) and the

marginal integration method proposed by Linton and Nielsen (1995) and Newey (1994), among other authors.

We believe that the implementation of these methods is beyond the scope of this paper.

The interpretation of the test given by (8) also allows us to apply standard asymptotic theory on non-

parametric regression models for weakly dependent data. We first require the following assumptions:

Assumptions:

A.1: The process {(Y A
t , Y B

t , It), t ∈ Z} is strictly stationary and β-mixing with β-mixing coefficients that

satisfy β(j) ≤ C exp(−C1j), with C,C1 > 0 being constants. The β-mixing coefficient is defined as β(j) =

sup
i

E

[
sup

V ∈ℑn
i+j

{
P (V |ℑi

1)− P (V )
}]

.

A.2: Let fIi|ℑi−1
j

be the density of the conditional distribution P {Ii ≤ x | Ij , . . . , Ii−1}. There exist constants
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C2, C3 > 0 such that

sup
i>η+1

{
P

(
sup
x∈Ω

[
|fIi|ℑi−1

1
(x)− fIi|ℑi−1

i−η
(x)|

]
> C exp(−C2η)

)}
≤ C exp(−C3η) ∀η ≥ 1

and

sup
i>1

sup
x∈Ω

{
fIi|ℑi−1

1
(x)
}
≤ C.

A.3: The joint cdfs of (I1, Y
A
1 ) and (I1, Y

B
1 ) are uniformly continuous on Rq+1. The functions f I1(x) and

gγ(z) are three-times differentiable with respect to I1, with derivative functions that satisfy the Lipschitz

condition |m(u) − m(v)| ≤ C|u − v| for some C > 0. The function f I1(x) is bounded away from zero for

x ∈ Ω′.

A.4: The kernel function w(·) implicit in (6) is a symmetric, bounded on [−1, 1], and compactly supported

probability distribution function. Defining Hl(v) = |v|lW (v) with W (v) =
q

Π
j=1

wj(v), we assume that |Hl(v)−

Hl(u)| ≤ C2|u− v| for all 0 ≤ l ≤ 3 and some constant C2 > 0.

A.5: Assume for simplicity that hs = h for s = 1, . . . , q. Then, as n → ∞, h → 0, (nhq)1/2/log n → ∞,

log n/(n1/(q+1)h) → 0 and hq/2log n → 0.

A.6: The conditional distributions of Y A
t and Y B

t given ℑt depend only on It, with ℑt the σ−field generated

by the information set up to time t.

A.7: The sequence ut(y) is an iid process and satisfies that E[ut(y) |It = x] = 0 for all z ∈ Ω̃. This process

is uniformly continuous on y ∈ Ω and E[u2t (y) |It = x] is Lipschitz continuous and bounded away from zero

on their support.

Assumptions A.1 and A.2 limit the extent of short weak dependence and allow us to apply the strong

approximation results for density estimators with weakly dependent observations by density estimators from

associated iid processes in Neumann (1998). A.7 assumes that the process gγ(It, y) not only captures condi-

tional dependence in the mean but also the extant serial dependence in the time series dt,γ(y), for all y ∈ Ω.

The iid property imposed on ut(y) is need to apply the strong approximation results discussed in Theorem

1 and thereafter. We must acknowledge that this assumption is quite restrictive in a dynamic setting and

extensions considering ut(y) to be a martingale difference sequence are very desirable. In fact, the martingale

difference assumption is sufficient to obtain pointwise consistency and inference results. The rest of assump-

tions are standard for estimation and inference in nonparametric kernel methods. Under these assumptions

we can apply the results on uniform convergence for nonparametric kernel regression estimators by Masry
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(1996) and Hansen (2008) to our setting. In particular we have that

sup
z∈Ω̃

∣∣Dn,γ(z)− gγ(z)
∣∣ = O

(
q∑

s=1

h2s +

(
log n

nhq

)1/2
)

as n → ∞

almost surely. This result extends the pointwise convergence in probability and shows that Dn,γ(z) can be

used for testing the composite hypothesis H0,γ . The nonparametric nature of this estimator implies that its

rate of convergence is no longer the standard n1/2. To construct a test for stochastic dominance we extend this

strong approximation result to the normalized process (nhq)1/2 (Dn,γ(z)− gγ(z)). The use of nonparametric

kernel estimators for estimating gγ(z) renders this extension more difficult to establish; standard results to

show the tightness of empirical processes cannot be immediately applied in this context. Instead, we adapt

the asymptotic theory developed in Chernozhukov, Lee and Rosen (2012) and Ponomareva (2010), based on

strong approximations of nonparametric kernel estimators by a sequence of Brownian bridge processes in an

iid setting, to a setting with weakly dependent observations. This is done using results by Neumann (1998)

on strong approximations of density estimators from weakly dependent observations by density estimators

from independent observations.

Note that the sequence containing the information set I1, . . . , In is a weakly dependent time series with a

stationary density f I1 . As a counterpart, we consider iid random vectors Ĩ1, . . . , Ĩn with the same density f I1

to derive the relevant strong approximation result, see proof of Theorem 1 in appendix and Neumann (1998,

pp. 2016− 2021) for more details on this construction.

Theorem 1. Let ℓz(Ĩt, ut) = ut(y)

hq/2fI1 (x)
W
(
Ĩt−x
h

)
with ut(y) an iid error term obtained from (8). Under

A.1-A.7,

sup
z∈Ω̃

∣∣(nhq)1/2 (Dn,γ(z)− gγ(z))−Gn(ℓz)
∣∣ = oP (δn)

with z = (x, y) ∈ Ω̃, Gn(ℓz) a sequence of centered Brownian bridge processes such that z 7→ Gn(ℓz) has

continuous sample paths over Ω̃ and δn is such that n−1/(2q+2)(h−1log n)1/2 + (nhq)−1/2log3/2 n = o(δn).

Let Tn,γ = sup
z∈Ω̃

(nhq)1/2Dn,γ(z) be a family of test statistics suitable for testing (5). Under H̃0,γ , Theorem

1 shows that the critical values of the test can be uniformly approximated by the relevant quantiles of the

distribution of the supremum of Gn(ℓz) for n sufficiently large. Let cn,α with 0 < α < 1, denote the sequence

of α−quantiles corresponding to the sequence of approximating distributions.

Theorem 2. Given Assumptions A.1-A.7,
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(i) if H0,γ is true

(9) lim
n→∞

P {Tn,γ > cn,α} ≤ α,

with equality under H̃0,γ .

(ii) if H0,γ is false

(10) lim
n→∞

P {Tn,γ > cn,α} = 1.

This theorem shows the consistency of the family of stochastic dominance tests defined by Tn,γ . As

a byproduct, condition (i) reveals that for null hypotheses more general than H̃0,γ the correct asymptotic

critical value of the test is smaller than cn,α, given n. In this case the test Tn,γ is undersized producing in turn

a loss in statistical power. This problem is still unresolved in the literature; Delgado and Escanciano (2013)

partially solve it by proposing conditional stochastic dominance tests in an iid setting that are consistent over

the boundary of the null hypothesis.

In practice, however, the critical values cn,α are not known and cannot be universally tabulated. The

approximation of the distribution of Tn,γ given by the above family of Brownian bridge processes depends

on nuisance parameters as, for example, the density f I1(x) or the bandwidth parameters hs if obtained from

data-driven methods. Critical values need to be approximated by resampling or simulation methods. The

next subsection discusses a simulation method to approximate the p-value of the tests.

3.2 Approximation of the Asymptotic P-Values

The asymptotic distribution of Tn,γ is nonstandard due to the presence of nuisance parameters. This implies

that critical values for stochastic dominance tests of an arbitrary order γ cannot be universally tabulated.

In this case there are several alternatives explored in the literature for testing stochastic dominance, namely,

simulation and iid bootstrap methods as in Barrett and Donald (2003), subsampling and bootstrap as in LMW,

and block bootstrap for time series as in Scaillet and Topaloglou (2010). We propose instead a simulation

method based on the above nonparametric kernel regression and similar in spirit to the multiplier method for

kernels in Chernozhukov, Lee and Rosen (2012)3.

3In a similar nonparametric context, Ponomareva (2010) develops different bootstrap methods for inference on the parameters
of unconditional moment inequalities.
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We operate conditionally on a realization of the process {(Y A
t , Y B

t , It)}nt=1 denoted by ωn = {(yAt , yBt , it)}nt=1.

Define the simulated process S∗
n,γ(z) = (nhq)1/2D∗

n,γ(z). This process can be generated from

(11) D∗
n,γ(z) =

n−1
n∑

t=1
d∗t,γ(y)Wh

(
It−x
h

)
f̂ I1(x)

,

with d∗t,γ(y) = dt,γ(y)et and et as an external iid(0, 1) random variable independent of the data. Interestingly,

this process can be interpreted as the Nadaraya-Watson estimator of g∗γ(It, y) in the dynamic nonparametric

regression

(12) d∗t,γ(y) = g∗γ(It, y) + u∗t (y),

with u∗t (y) the error term of the nonparametric regression.

Theorem 3. Under A.1-A.7, the process S∗
n,γ(z) satisfies that

Pωn

{
sup
z∈Ω̃

∣∣S∗
n,γ(z)− Ḡn(ℓz)

∣∣ > o (ζn)

}
→ 0 as n → ∞,

with Ḡn(ℓz) an independent and identically distributed copy of the Brownian bridge process Gn(ℓz) and ζn → 0

as n → ∞; Pωn denotes the simulated probability conditional on the sample ωn.

Let T ∗
n,γ = sup

z∈Ω̃
S∗
n,γ(z); this theorem shows the uniform consistency of the simulated critical value obtained

from the quantile of the distribution of T ∗
n,γ . More formally, under H0,γ ,

lim
n→∞

Pωn

{
T ∗
n,γ > Tn,γ

}
≤ α.

The distribution of T ∗
n,γ is not directly observed but by operating conditionally on ωn, it can be approximated

to any degree of accuracy. The algorithm to compute the p-value of the test is described as follows.

Algorithm:

1. Construct a grid of ȷ1× ȷ2 points indexed by zij = (xi, yj), with i = 1, . . . , ȷ1 and j = 1, . . . , ȷ2 contained

in the compact space Aȷ1×ȷ2 ⊂ Ω̃; and execute the following steps for b = 1, . . . , B.

2. Generate {et}nt=1 iid(0, 1) random variables independent of the data, and construct d∗t,γ(yj) = dt,γ(yj)et.

3. Set D
∗(b)
n,γ (zij) =

n−1
n∑

t=1
d∗t,γ(yj)Wh

(
It−xi

h

)
f̂I1 (xi)

for all zij ∈ Aȷ1×ȷ2 , with Wh

(
It−xi

h

)
=

q

Π
s=1

h−1
s w

(
It,s−xi,s

hs

)
;

12



w(·) is a univariate kernel function for each component of It and h1, . . . , hq obtained from optimal

cross-validation methods.

4. Set S
∗(b)
n,γ (zij) = (nhq)1/2 D

∗(b)
n,γ (zij).

5. Store T
∗(b)
n,γ = sup

zij∈Aȷ1×ȷ2

S
∗(b)
n,γ (z).

This algorithm yields a random sample of B observations from the distribution of sup
z∈Ω̃

S∗
n,γ(z). Using the

Glivenko-Cantelli theorem and previous assumptions, the empirical p-value conditional on ωn defined by

p̂∗n,B,γ =
1

B

B∑
b=1

1(T ∗(b)
n,γ > Tn,γ)

converges in probability to Pωn

{
T ∗
n,γ > Tn,γ

}
as B → ∞.

4 Monte-Carlo Simulation Exercise

In this section, we consider two different Monte Carlo simulation experiments to assess the accuracy in finite

samples of the nonparametric tests on the first, second and third orders of dynamic conditional stochastic

dominance. The first simulation experiment studies the performance of the tests in a cross-sectional regression

model, and the second studies the performance of the tests in a simple time series context. For completeness,

we also study the power of the test under fixed alternatives.

For the first experiment, the data generating process is

(13) Y j
i = αj

0 + βjXi + εji , with j = A,B,

with Xi as a univariate N(0, 1) random variable. The error term (εA, εB) is a bivariate random variable

that follows a standardized Student’s-t distribution with ν = 30, 5 degrees of freedom and cross-correlation

parameters ρ(εA, εB) = 0, 0.8. This distribution is selected to add flexibility to the model and better approx-

imate the behavior of innovations encountered in the modeling of financial time series (see Bollerslev (1987)).

The critical values of the different tests are obtained assuming the least favorable case H̃0,γ under the null

hypothesis.

Table 1 reports the empirical size of the stochastic dominance tests H0,γ for γ = 1, 2, 3, for the data

generating processes determined by αA
0 = αB

0 = 0 and βA = βB = 0.5. The results are robust to the choice

13



of degrees of freedom and of the correlation parameter governing the cross-dependence between Y A and Y B.

The performance of the test improves with the sample size.

Table 2 reports the results on the power of the tests for H0,γ for γ = 1, 2, 3 for two different types of

alternative hypotheses. First, we consider the alternative hypothesis given by the stochastic dominance of Y B

over Y A, characterized by the model parameters αB
0 = αA

0 + c with c = 0.1, 0.25, and a bivariate Student’s-t

distributed error term vector with 30 degrees of freedom and uncorrelated components4. The power of the test

is slightly higher for the second order compared to the other orders of stochastic dominance under study. It

increases with the sample size and as the alternative hypothesis departs from the null hypothesis. The second

power analysis in this cross-sectional setting (see Table 2b) assesses whether the test is capable of detecting

stochastic efficiency (no dominance of either portfolio). This hypothesis is in the alternative hypothesis to

H0,γ . The following simulation experiment focuses on stochastic efficiency of the first order and is characterized

by the processes Y A
i = Xi+0.5εAi +0.5εBi and Y B

i = Xi+ εBi , with X ∼ N(0, 1), ρ(εA, εB) = 0 and ν = 30, 5.

The conditional distributions of these variables are both Student’s-t distributions with expected values given

by the values taken by X. The conditional variance of Y A is, however, smaller than that of Y B, implying that

for the second and higher orders, these processes are under the null hypothesis H0,γ . The power of the test

for the first order is very high and increases with the sample size. For second and third orders, the empirical

rejection probabilities are very close to the nominal sizes.

[INSERT TABLE 1 AND 2 ABOUT HERE]

The simulation section is completed with the study of the size and power of the test for stationary time

series processes. The data generating process is

(14) Y j
t = αj

0 + βj(Y A
t−1 + Y B

t−1) + εjt , with j = A,B.

For αA
0 = αB

0 = 0 and βA = βB = 0.25, the processes are under the null hypothesis H̃0,γ . The results

in the upper panel of Table 3 show that the simulated size of the test is very close to the nominal size

for n = 500. In contrast to the cross-sectional study, we now observe that for n = 50, the simulated size

underestimates the true size of the test. This result is more important for first-order stochastic dominance

than for second- or third-order stochastic dominance. To assess the size of the test for the general hypothesis

H0,γ that considers the strict inequality between ΨA
It,γ

and ΨB
It,γ

, we contemplate two simulation exercises.

4The results for other choices of error distribution do not vary qualitatively and are not reported for the sake of of space but
are available from the authors upon request.

14



First, we analyze the size for ΨA
x,γ(y)−ΨB

x,γ(y) = K for all (x, y) ∈ Ω̃ with K < 0 constant, and, second, for

ΨA
x,γ(y)−ΨB

x,γ(y) = Ko(n−1/2). The first experiment is achieved by imposing the model parameters αA
0 = 0.1

and αB
0 = 0, and the second experiment is achieved by using a local null hypothesis given by αA

0 = 0.1n−1/2

and αB
0 = 0. These results are reported in the middle and lower panels of Table 3. These simulations are

consistent with the theory developed above. For the first case, the approximation provided by our simulation

method yields an undersized test. For null hypotheses that converge to the least favorable case as n increases,

the results improve, and the test yields reasonable estimates of the size for n = 500.

Finally, we study the power of the test for alternatives defined by αB
0 = αA

0 + c with c = 0.1, 0.25. The

results are similar to those obtained for the cross-sectional study. The test is consistent under fixed alternatives

revealing a nontrivial power in finite samples. Table 4 reports these results5 for αA
0 = 0.

[INSERT TABLE 3 AND 4 ABOUT HERE]

The good performance of this family of tests in terms of size and power reinforces their usefulness in

finite-sample applications.

5 Application: Investment Performance of Sectoral Portfolios

In this section, we apply our nonparametric tests of stochastic dominance to US sectoral portfolios conditional

on the dynamics of the market portfolio. The data set consists of monthly excess returns on the ten equally-

weighted industry portfolios obtained from the data library on Kenneth French’s website and of monthly

excess returns on the market portfolio constructed as a value-weighted return on all NYSE, AMEX, and

NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate. The period under study is January

1960 to December 2009. The sectors are Nondurables, Durables, Manufactures, Energy, High Technology,

Telecommunications, Shops, Health, Utilities and Others.

Table 5 reports the p-values of the tests of the first, second, and third orders of conditional stochastic

dominance. The p-values are obtained assuming the null hypothesis H̃0,γ . Each row in Table 5 shows a vector

of simulated p-values that each correspond to the test H0,γ : ΨA
It,γ

≤ ΨB
It,γ

with portfolio A in the row and

portfolio B in the column. If the p-value is higher than the significance level α we cannot reject the null

hypothesis. To see if the hypothesis of conditional stochastic dominance of A over B can be accepted, we

5To save space the power analysis corresponding to the efficiency between the portfolios is omitted in this time series framework.
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need to analyze the p-value of the reverse test given by the dominance of B over A. If the p-value of the latter

reverse test is less than the significance level α, we conclude that A dominates B for order γ; otherwise, we

cannot differentiate statistically between ΨA
It,γ

and ΨB
It,γ

.

The high p-values observed in Table 5 indicate that the null hypothesis of first-stochastic dominance cannot

be rejected in either direction for any of the sectors. This result suggests a very similar distributional perfor-

mance of the different sectoral investment portfolios. The study of second order stochastic dominance is more

revealing. In this case, we observe that the test between A =High Technology and B =Telecommunications

rejects the null hypothesis (p−value=0.082), and the reverse test6 is not rejected (p−value=0.220). This

means that the portfolio composed of companies working in the Telecommunications sector (Telephone and

Television Transmission) has a second-order stochastic dominance over the portfolio of companies in the

High-Tech sector (Business Equipment – Computers, Software and Electronic Equipment) conditional on the

dynamics of the market portfolio, and, hence, is the choice of risk-averse investors. To check the robustness of

this result, we also compute the test for third-order stochastic dominance. The p-value of H̃0,3 for A =High

Technology and B =Telecommunications is 0.098 and 0.796 for the reverse test. The Telecommunications

portfolio is also preferred by investors with increasing levels of risk aversion. Similar findings are obtained

for the pair A =Shops and B =Telecommunications; the null hypothesis is rejected for the second order

(p−values=0.072), but the reverse test is not (p−value=0.246). For the third-order stochastic dominance,

we observe similar results, a p-value of 0.060 for H0,3 and a p-value of 0.716 for the corresponding reverse

test. This implies that Telecommunications also stochastically dominates the portfolio of companies in the

Wholesale, Retail, and Some Services (Laundries, Repair Shops) conditional on the dynamics of the market

portfolio.

The overall good performance of Telecommunications compared to the rest of sectors is worth noting.

The p-values of the second and third order stochastic dominance tests of this portfolio against the rest of the

sectoral portfolios (the column corresponding to Telecommunications in the middle and lower panels) take

values of approximately 0.12-0.15. At the same time, the p-values in the row corresponding to this sector are

all higher than 0.20. These combined results show that at the 20% significance level, Durables, Nondurables,

Manufactures, High-Technology and Shops are dominated by Telecommunications for the second and third

orders, conditional on the dynamics of the market portfolio.

To assess the importance of considering the dynamics of the market portfolio we repeat the empirical

6The alternative hypothesis in this case is the dominance of A by B. The test statistic is constructed by reversing the roles of
A and B. Critical values are obtained assuming H̃0,γ . The p-values are calculated from the algorithm in Section 3.2.
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exercise by implementing unconditional versions of the various stochastic dominance tests. The very weak

serial correlation between the monthly excess returns on the sectoral portfolios implies that we can apply

the method developed by Barrett and Donald (2003) through accommodating cross-dependence between

portfolios A and B to approximate the p-values of the different stochastic dominance tests. Table 6 reports

the p-values of the different tests; the results suggest a completely different ordering of investment strategies.

The Durables sector is, for example, an efficient portfolio in the sense that is not dominated nor dominates

any other sectoral portfolio; similarly, High Technology is stochastically efficient for the first order but not

for higher orders. In fact, as for the conditional case, we observe that Telecommunications dominates High

Technology for orders higher than one. Finally, it is worth noting that in this unconditional setting Utilities

performs very well compared to the rest of the sectoral portfolios. The p-values of the test for the second

order reveal that Utilities dominates every other sector except for Nondurables and Telecommunications. The

latter two sectors dominate Utilities.

6 Concluding Remarks

For the concept of stochastic dominance to be fully operational, it has to be exploited dynamically. While

there are many influential methods for testing the hypothesis of stochastic dominance in an unconditional

or marginal setting, there are only a few methods that aim to do this dynamically or conditionally on an

information set. Moreover, these conditional stochastic dominance tests rely heavily on assuming an appro-

priate parametric structure for the dependence between the variables and hence are subject to misspecification

issues.

This paper presents a nonparametric test for conditional stochastic dominance that easily accommodates

the presence of dynamics in the variables without having to impose strong assumptions on the specific form

of these dynamics. The asymptotic theory of the test is simple, and p-values can be approximated by sim-

ulation methods. The test has good finite-sample performance and is easy to implement under a variety

of conditional settings. The application to studying investment performance on sectoral indices shows that

the Telecommunications sector dominates the High-Tech and Shop sectors for the second and third orders of

stochastic dominance. Furthermore, at the 20% significance level, this portfolio also dominates for second and

third orders of stochastic dominance the other sectoral portfolios. The advantage of the Telecommunications

sector compared to the rest of portfolios appears to be in the low volatility of its returns for a given expected

return level. These results are also observed for increasing risk aversion.
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appendix

Proof of Theorem 1: To prove this theorem we follow Theorem 8 in Chernozhukov, Lee and Rosen (2012).

The theorem developed by these authors is derived in an iid setting so we need to transform our stationary

weakly dependent framework into iid. This is done by applying the results in Neumann (1998) to the stationary

Bahadur representation of (nhq)1/2 (Dn,γ(z)− gγ(z)) in terms of ut(y) and W ( It−x
h ). First, we derive this

asymptotic expansion for the stationary case. Note that

(nhq)1/2 (Dn,γ(z)− gγ(z)) =

1

(nhq)1/2f̂ I1(x)

(
n∑

t=1

(gγ(It, y)− gγ(z))W

(
It − x

h

))
+

1

(nhq)1/2f̂ I1(x)

n∑
t=1

ut(y)W

(
It − x

h

)

with W (·) = hqWh(·) and z = (x, y). The expression 1

(nhq)1/2f̂I1 (x)

(
n∑

t=1
(gγ(It, y)− gγ(z))W

(
It−x
h

))
converges

to zero uniformly over z ∈ Ω̃. This is a consequence of the uniform convergence of nonparametric kernel

estimators derived in Masry (1996) under strong mixing conditions. These results can be applied in our

setting by imposing a beta mixing condition (A.1) limiting the extent of serial dependence in the data, the

smoothness of the function gγ(z) and the Lipschitz conditions in A.3 and A.4. Then

(nhq)1/2 (Dn,γ(z)− gγ(z)) =
1

(nhq)1/2f I1(x)

n∑
t=1

ut(y)W

(
It − x

h

)
+ oP (1),

uniformly over Ω̃.

To obtain the characterization of this Bahadur representation in terms of an iid process we use the

following;

(nhq)1/2 (Dn,γ(z)− gγ(z)) =

1

(nhq)1/2f I1(x)

n∑
t=1

ut(y)

(
W

(
It − x

h

)
−W

(
Ĩt − x

h

))
+

1

(nhq)1/2f I1(x)

n∑
t=1

ut(y)W

(
Ĩt − x

h

)
+ oP (1)

In order for

(15) sup
z∈Ω̃

∣∣(nhq)1/2 (Dn,γ(z)− gγ(z))−
1

(nhq)1/2f I1(x)

n∑
t=1

ut(y)W

(
Ĩt − x

h

)∣∣
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to converge to zero as n → ∞ it suffices that

(16) sup
z∈Ω̃

∣∣ 1

(nhq)1/2f I1(x)

n∑
t=1

ut(y)

(
W

(
It − x

h

)
−W

(
Ĩt − x

h

))∣∣
to be oP (1) as n → ∞.

Before proceeding with the proof of this condition we briefly discuss how to construct the iid sequence

Ĩt. The method developed by Neumann (1998) establishes a link between density estimation under weak

dependence and density estimation based on independent observations by embedding the random variables,

It and Ĩt in our case, in a common marked Poisson process N indexed by time as well as spatial position.

More specifically, the Poisson process N is defined on (0,∞)×Ω′ with intensity function equal to the density

function f I1(x) for x ∈ Ω′. Neumann (1998, pp 2018 − 2021) describes the method to generate copies of

the observations {I1, . . . , In} and {Ĩ1, . . . , Ĩn} retaining the joint distribution of the original random vector

{I1, . . . , In}. Since the transition densities are usually different from the stationary density, the construction

for the time series model borrows some probability mass assigned to future time points in the iid model. This

is the reason to introduce a time axis for the Poisson process embedding method.

The proof of Theorem 1 does not require specific knowledge on the construction of the iid process. To

complete the proof we must prove condition (16). Note that the process dt,γ(y) is bounded over a compact

set implying in turn that the error process ut(y) is also bounded. Let C4, C5 with −∞ < C4 < 0 < C5 < ∞

be universal lower and upper bounds, respectively, of the process ut(y). Then, for each x ∈ Ω′ the expression

inside the summation operator can be reordered in terms of positive and negative values as

k(x)∑
t=1

ut(y)

(
W

(
It − x

h

)
−W

(
Ĩt − x

h

))
+

n∑
t=k(x)+1

ut(y)

(
W

(
It − x

h

)
−W

(
Ĩt − x

h

))

with k(x) denoting the number of terms with W
(
It−x
h

)
−W

(
Ĩt−x
h

)
< 0 and n−k(x) the number of remaining

observations; note that by construction sup
x∈Ω′

k(x) = O(n). It is trivial to see that, for each x ∈ Ω′, this

expression can be upper bounded by

k(x)∑
t=1

C4

(
W

(
It − x

h

)
−W

(
Ĩt − x

h

))
+

n∑
t=k(x)+1

C5

(
W

(
It − x

h

)
−W

(
Ĩt − x

h

))
.

After suitable algebra mainly consisting of adding and substracting from the preceding expression the term
n∑

t=k(x)+1

C4

(
W
(
It−x
h

)
−W

(
Ĩt−x
h

))
, for each x ∈ Ω′, the expression inside the supremum functional in (16) is
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upper bounded by

(17)
|C4|

f I1(x)
(nhq)1/2

∣∣f̂ I1
n (x)− f̂ Ĩ1

n (x)
∣∣+ |C5 − C4|

f I1(x)

(n− k(x))hq/2

n1/2

∣∣f̂ I1
n−k(x)(x)− f̂ Ĩ1

n−k(x)(x)
∣∣

where f̂ Ĩ1
n (x) = 1

nhq

n∑
t=1

W
(
Ĩt−x
h

)
is the kernel estimator of f I1(x) corresponding to the associated iid process

Ĩt and f̂ I1
n (x) the stationary kernel estimator counterpart. The subscript n in f̂ refers to the number of

observations involved in the estimation of the density functions.

Taking the supremum of (17) over x ∈ Ω′ and using that f I1(x) is bounded away from zero, we can upper

bound the previous expression as

(18) C6(nh
q)1/2 sup

x∈Ω′

∣∣f̂ I1
n (x)− f̂ Ĩ1

n (x)
∣∣+ C7(nh

q)1/2 sup
xo∈Ω′

(
sup
x∈Ω′

∣∣f̂ I1
n−k(xo)

(x)− f̂ Ĩ1
n−k(xo)

(x)
∣∣)

where C6 and C7 are suitable positive constants. Neumann (1998) shows under some regularity conditions,

mainly A.1 and A.2, that

sup
x∈Ω′

∣∣f̂ I1
n (x)− f̂ Ĩ1

n (x)
∣∣ = O

(
n−1/2log n

)
.

Then, expression (18) reads as

(19) C6 O
(
hq/2log n

)
+ C7 sup

xo∈Ω′
O

((
n

n− k(xo)

)1/2

hq/2log (n− k(xo))

)
.

Then, it is not difficult to see that under A.5, more specifically under condition hq/2log n → 0, and using that

n/(n− k(xo)) converges to a constant as n → ∞, expression (19) converges to zero as n → ∞.

To complete the proof of the theorem we apply Theorem 8 in Chernozhukov, Lee and Rosen (2012) to

1

(nhq)1/2f I1(x)

n∑
t=1

ut(y)W

(
Ĩt − x

h

)
+ oP (1).

As a result, it holds that

sup
z∈Ω̃

∣∣(nhq)1/2 (Dn,γ(z)− gγ(z))−Gn(ℓz)
∣∣ = oP (δn)

with Gn(ℓz) a Brownian bridge process, ℓz(Ĩt, ut) = ut(y)

hq/2fI1 (x)
W
(
Ĩt−x
h

)
and δn a sequence satisfying that

n−1/(2q+2)(h−1log n)1/2 + (nhq)−1/2log3/2 n = o(δn).
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Proof of Theorem 2: Let cn,α be the sequence of critical values at a significance level α obtained from the

distribution of the supremum of Gn(ℓz). Under A.1-A.7, the strong approximation in Theorem 1 implies that

under H0,γ ,

lim
n→∞

P {Tn,γ > cn,α} ≤ α.

Under H̃0,γ the distribution of (nhq)1/2Dn,γ(z) is uniformly approximated by the above sequence of Brownian

bridge processes for n sufficiently large. Then, it follows that the critical value of Tn,γ is uniformly consistently

approximated by cn,α for n sufficiently large, giving the equality in (9).

To prove Condition (ii), note that Theorem 1 shows that the process (nhq)1/2(Dn,γ(z)−gγ(z)) is uniformly

approximated by the above sequence of Brownian bridge processes. The distribution of

(nhq)1/2sup
z∈Ω̃

(Dn,γ(z)− gγ(z)) converges to the distribution of the supremum of Gn(ℓz) uniformly over z ∈ Ω̃.

If H0,γ is false, this process is majorized in distribution by the process (nhq)1/2sup
z∈Ω̃

Dn,γ(z) that diverges to

infinity since nhq → ∞ as n → ∞. Hence, it is immediate to see that

lim
n→∞

P {Tn,γ > cn,α} = 1.

Proof of Theorem 3: By construction,

(20) S∗
n,γ(z) =

1

(nhq)1/2f̂ I1(x)

n∑
t=1

d∗t,γ(y)W

(
It − x

h

)
.

Using the same steps as for the proof of Theorem 1, it is not difficult to see that under the null hypothesis

H̃0,γ and assumptions A.1-A.7 the process S∗
n,γ(z) has the following Bahadur representation:

S∗
n,γ(z) =

1

(nhq)1/2f I1(x)

n∑
t=1

u∗t (y)W

(
Ĩt − x

h

)
+ oP (1),

with Ĩt the counterpart iid random vector of the weakly dependent sequence It and u∗t (y) = ut(y)et with et

an iid(0, 1) random variable independent of the data.

The simulated process S∗
n,γ(z) can be expressed as 1

n1/2

n∑
t=1

etℓz(Ĩt, ut), and Theorem 9 in Chernozhukov,

Lee and Rosen (2012) can be applied to obtain the result in Theorem 3.
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